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Gravitational Energy and Momentum: 
A Tensorial Approach 
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A tensorial expression for localized gravitational energy-momentum is delineated 
as an integral part of the energy-momentum tensor. A bona fide conservation 
law of the total energy-momentum tensor is obtained in the geodesic-nonrotating 
coordinates, in which the covariant divergencelessness of the energy-momentum 
tensor reads, globally, as ordinary divergencelessness. The integral gravitational 
energy in the exterior of a spherically symmetric source is calculated based on 
this tensorial relativistic expression. For an ordinary star, such as the sun, it 
coincides with the Newtonian value up to six digits. 

1. I N T R O D U C T I O N  

In  recent papers (Nissani  and Leibowitz,  1988, 1989, 1990; Carmeli  et 
aL, 1990) a special class o f  geodesic  coordina te  systems has been del ineated 
and investigated. In these preferred frames the laws of  physics assume 
locally their special relativistic form, whereas the ene rgy-momentum tensor  
satisfies a global conservat ion law, i.e., its ordinary  divergence vanishes. 
This global conservat ion law does away with the need for a kind of  energy 
not  included in the ene rgy-momentum tensor,  and at the same time bears 
on the possibili ty o f  defining gravitational energy in a tensorial form, as an 
integral par t  o f  the ene rgy-momentum tensor. 

The gravitat ional  ene rgy-momentum problem has been tackled by many  
authors  (e.g., Einstein, 1916; Rosen,  1940; Landau  and Lifshitz, 1951; 
Bergmann and  Thomson ,  1953; Moiler, 1958; Goldberg,  1958; Komar ,  1959; 
Cornish,  1964; Trautman,  1967; Penrose,  1982; Kovacs,  1985), and a variety 
o f  pseudo- tensors  has been proposed  as the expression of  the gravitational 
energy-momentum.  It is, however,  generally agreed that no complete ly  
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satisfactory solution to this problem has been offered (see, for example, 
Maddox, 1985). 

The present paper introduces a true tensorial approach to the age-old 
problem of gravitational energy in the framework of general relativity. 
A tensorial expression for localized gravitational energy-momentum is 
obtained. Based on this tensorial expression, the space integral of the 
gravitational energy in the surroundings of a star turns out to have a value 
which is, for ordinary stellar objects, in high agreement with the Newtonian 
value. 

The need and rationalization for such a tensorial expression relies on 
the existence and properties of the special frames mentioned above. We 
shall therefore recap those results of our previous study of the preferred 
geodesic frames which pertain to the main thrust of the present work. 

Section 2 discusses briefly the geodesic-nonrotating frames along with 
their implication for the problem of the existence and nature of the gravita- 
tional energy. The basic building blocks of our tensorial approach, the 
fundamental tetrad vectors, are studied in Section 3. A decomposition of 
the Einstein tensor, induced by the fundamental tetrad, is exhibited, and 
the field equations are spelled out in Section 4. The behavior of the field 
equations under Lorentz transformations of the tetrad is studied in Section 
5. An exact solution of the field equations is derived in Section 6 for the 
case of a spherically symmetric source, and the resulting invariant value of 
the gravitational energy is compared with the Newtonian value. Section 7 
is devoted to concluding remarks. 

2. NONROTATING COORDINATES 

Any given symmetric tensor singles out, by a prescription outlined in 
Nissani and Leibowitz (1990), a class of coordinate systems, entitled "adap- 
ted to the given tensor," in which the ordinary divergence of the tensor 
vanishes. Specifically, if C ~' is a symmetric tensor and ~:(~) are four scalar 
functions, then the following ten integral functionals may be defined: 

I(~)(~)_ f ~ C ~/3~(~)~(v) d4x (1) - -  S , a  6 , ~  
3 V 

where V is an arbitrary region of spacetime. We now consider the action 
principle based on these integrals, namely, we require a stationary value of 
these functionals with respect to variations of the scalar functions ~(~), 
subject to the constraint that the variations vanish on the boundary of the 
integration region. The ensuing Lagrange equations 

s,~ ~;o = 0 (2) 
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suggest passing to the coordinates defined by the four scalars s r 

x '~ = ~(")(x) (3) 

In the new coordinates, equation (2) assumes the form 

c = 0 (4) 

viz., a global continuity equation. 
Thus, an arbitrary symmetric tensor satisfies a global continuity 

equation in those coordinate systems where the integrals of its components 
over any arbitrary four-dimensional region of spacetime attain a stationary 
value. 

Particular examples of adapted frames are the harmonic coordinates, 
where the symmetric tensor is the metric tensor and equation (4) is simply 
the deDonder condition, and the nonrotating coordinates (Nissani and 
Leibowitz, 1988, 1989, 1990; Carmeli et  al., 1990), where the symmetric 
tensor is the energy-momentum tensor. 

In order to assign some tangible physical significance to this "conserva- 
tion law," one has to pose the question of the conditions on the symmetric 
tensor under which there exist adapted frames which are geodesic with 
respect to an arbitrary observer. As was shown (Nissani and Lebowitz, 1989, 
1990), a necessary and sufficient condition for a symmetric tensor C ~ to 
admit geodesic adapted coordinate systems with respect to any given obser- 
ver is that its covariant divergence vanishes: 

c %  : o (5) 

This condition holds in the case of the energy-momentum tensor T ~ 
that appears in the Einstein field equations. The geodesic coordinates 
adapted to it, the geodesic-nonrotating coordinates, are therefore distin- 
guished by the fact that in these frames: 

(a) The laws of physics assume locally their special relativistic form. 
(b) The energy-momentum tensor satisfies a global continuity equation. 

We are therefore in the curved spacetime of general relativity in a 
condition analogous to that existing in the flat space of special relativity, 
where the law of energy-momentum conservation is valid in a special class 
of coordinate systems, the inertial frames. As was shown (Nissani and 
Leibowitz, 1988, 1989), this global conservation law leads, with the aid of 
the Gauss theorem, to an integral conservation law of satisfactory physical 
significance. 

3. THE FUNDAMENTAL TETRAD 

Having established the bona fide conservation of the energy-momentum 
tensor appearing in the Einstein field equations, there is no more obstacle 



840 Nissani and Leibowitz 

to accepting that all forms of  energy-momentum, whether they are attributed 
to matter or are ascribed to gravitational contribution, are incorporated into 
the conserved total energy-momentum tensor, which may be now written 
as a sum of  matter and gravitational energy 

T~ ~ = T ~  + T~ ~ (6) 

Since the gravitational energy-momentum tensor To is assumed to be, 
along with the Einstein tensor O, a function of  geometric elements, the 
splitting (6) induces a similar splitting of  the Einstein tensor 

G ~ : G ~  + O~ ~ (7) 

with the Einstein field equations cast in the form 

= ~ T M ,  O ~  ~ = ~ T ~  (8) 

and, clearly, 

G ~ = ~ v ~  ~ (9) 

Motivated by these considerations, we search for a mechanism to 
express the Einstein tensor as a sum of two tensors constructed of geometric 
elements. If  both tensors are required to be at most of  quasilinear second 
differential order in the underlying geometric structural elements, it seems 
impossible to take the metric tensor components alone as the basic elements. 
It is necessary therefore to introduce some fundamental quantities out of  
which the metric tensor is constructible. 

As an ansatz, we consider a set of four mutually orthogonal and 
normalized vector fields r (a =0,  1, 2, 3), which will be called the funda- 
mental tetrad. Here orthonormality is defined in terms of  the inner product  
induced by the metric tensor: 

& ~ nab C~ = g~  (10) 

where a b  = diag[1, - 1 ,  - 1 ,  -1 ]  is the Minkowski matrix. Alternatively, one 
may start with a set of linearly independent vector fields 4~, and interpret 
(10) as the definition of  the metric tensor. In the sequel, tetrad indices will 
be raised and lowered with the aid of  the Minkowski matrices a b  and ~ab. 

A simple heuristic counting argument lends some support to the con- 
sideration of the 16 components of the tetrad as the fundamental geometric 
objects. If  we construe the 20 components of  the gravitational and matter 
energy-momentum tensors as the physical data that determine the geometry 
of  spacetime, then any pair of  the three equations (9) and (10) constitutes, 
in view of the Bianchi identities, a system of 16 equations for the 16 
components of  the tetrad. 
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Having introduced the fundamental  tetrad, the Ricci coefficients of  
rotation are defined as the tetrad components  of  the covariant derivatives 
of  the tetrad vector fields 

P a b c  = a ~b ~bc tba~;~ (11) 

which, in view of  (10), satisfy the following antisymmetry relation: 

P.b~+ Pb.~=O (12) 

This relation reduces the independent  scalars to 24. They are further subject 
to integrability conditions which will be written down in the next section. 

4. THE FIELD EQUATIONS: DECOMPOSITION OF THE 
EINSTEIN TENSOR 

The Ricci coefficients of  rotation provide a useful representation of the 
Riemann curvature tensor. By (11) 

3'__ P3".~ q5 a - qS..;~ (13) 

where 

p3"~ a b c = ~b.~b ~ (b~P.bc (14) 

is the tensoriat version of  the Ricci coefficients of  rotation. Evaluating the 
commutator  of  the covariant derivatives of  the fundamental  tetrad yields 
[with the aid of  (13)]: 

R~3"a = (P~3";a - P~<3") + ( P ~ p a P P ~ y  -- P"o3"PP~a) (15) 

The Ricci tensor therefore is given by 

R ~  = (P3"~3";~ - pv  3 )̀ + (p3"acpa3" _ p3"a~par (16) 

This decomposi t ion of  the Ricci tensor bears some resemblance to its 
expression in terms of  the affine connections, in the sense that in both cases 
one gets a sum of a rotor part  and a commutator  part. The decomposit ion 
(16), however, is more suitable for our purposes,  since it exhibits the Ricci 
tensor as a sum of two tensorial quantities. 

The conventional approach to the problem of gravitational energy in 
general relativity (e.g., Landau and Lifshitz, 1951) associates the gravita- 
tional contribution to the energy-momentum with the commutator  of  the 
affine connections in the expression of the Ricci tensor. The remaining 
par t - - the  rotor of  the affine connect ions-- is  interpreted as the physical 
value of  the material energy and momentum (excluding gravitational), as 
measured in geodesic frames in which the commuta tor  part vanishes. This 
analogy gives a clue as to how to associate the decomposi t ion (16) to energy 
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and momentum. For reasons which will become clear later, the roles of  the 
rotor and commutator parts in our approach are reversed, and we take 

R ~ r  ; r  pv v ) (17) 

and 

g ~  = ( P v~r  - P v s v P ~  ) (18) 

as the gravitational and material parts of the Ricci tensor. Clearly, 

R~r = R ~  + RM~ (19) 

The following expressions of the Ricci tensor and its distinct parts in 
terms of the fundamental tetrad are easily verified: 

g ~  = ~b~(qS~;o ~ - qS~;~) (20) 

RG~ o a p a p a p a = - 4,~qb.;# o (21) ~b~;~b~;o + 

RMc~ B o a p a = - ~ b ~ ; ~ ; ~  ~b~;o~b~;~ (22) 

The partition of the Ricci tensor induces a decomposition of the Einstein 
tensor: 

with 

and 

G,r = G c ~  + G ~ o  (23) 

1 p (24) 

1 p G M ~  = RM ( ~,~ ) -- ~g ,~R  Mp (25) 

where brackets denote symmetrization over the two indices. 
We are now in the position to write down explicitly the field equations 

(8) and (9) in terms of the components of the fundamental tetrad: 

p a p a a p  p a 

1 t - - p  - - a T  - -  p a3, a T  q~aq~ ;p3,--~b ;~,p)=KTG~I3 (26a) 
( ~ p  - - a  - - p  ~ a  1 z i p  ~ a 3 "  p a 7  a;pO(o~;B)--~ga;(BOa);p--~gaB[ea;pq) ;.r--q~a;3,~b ;p)=KTMal~ (26b) 

and 

[9 a a 1 r o z ~ a ' y  a3~ 
~Pa(6a;pB--6a;Bp)--2gaBqga~,q ) ;p7--6 ;Vp)=KTTa~ (27) 

where equation (26a) is the tensorial expression of the gravitational energy, 
as a function of metric elements, that we are looking for. The fundamental 
tetrad, in turn, determines the metric tensor by equation (10). 
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Material and gravitational energy-momentum are now independent 
physical quantities, related by the four constraints of  the conservation law 

( T ~ +  T~);~ = 0  

which reflect the Bianchi identities. 

5. LORENTZ INVARIANCE 

Having established the field equations (26) and a tensorial expression 
for the gravitational energy (26a), which are clearly covariant under the 
group of  general coordinate transformations, we now turn to the question 
of  their behavior under tetrad transformations. 

The most general transformation which preserves the orthonormality 
relation (10) is a Lorentz transformation. First, consider the case of a global 
Lorentz transformation 

&"~ = Lab&b ~ (28) 

where the matrix L is constant. Clearly, the tensorial components of the 
Ricci coefficients of rotation P remain invariant under such a transformation, 
and hence the gravitational and material parts (24) and (25) of the Einstein 
tensor remain invariant as well. The global orientation of the tetrad 
throughout spacetime is therefore inconsequential so far as the distribution 
of the total energy-momentum and its partition between gravitational and 
matter energy-momentum is concerned. 

The situation is different when a local (coordinate-dependent) Lorentz 
transformation is applied to the tetrad. While equation (20) is still invariant, 
equations (21) and (22) are not. That is, the local relative orientation of 
the tetrads determine the partition of the total energy-momentum between 
the gravitational and matter parts. 

Thus, for a given background metric g and the total energy-momentum 
tensor Tr ~e associated with it, the 16 components of  the tetrad are subject 
to the ten algebraic constraints 

~b~& a~ = g ~  (29) 

which leaves six degrees of freedom in the choice of the tetrad. This grade 
of freedom corresponds to the six parameters--functions of the coordin- 
a t e s - t h a t  define a local Lorentz transformation 

&'~ = Lab(X)&b ~ (30) 

The latter leaves the Einstein tensor, and hence the total energy-momentum, 
invariant, but changes their partition into material and gravitational parts. 
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6. GRAVITATIONAL ENERGY DUE TO A SPHERICALLY 
SYMMETRIC SOURCE 

We now present an exact solution of the field equations corresponding 
to a spherically symmetric source. Let the source be of mass M and radius 
R, and assume that the total energy-momentum (material plus gravitational) 
vanishes in the exterior of the source, viz., 

T ~ - ~ = T ~ + T ~ = O  ( r > R )  (31) 

Under these circumstances, the unique spherically symmetric solution for 
the metric of the underlying manifold is the Schwarzschild metric 

g~e = diag(A, - A  -.~, - r  2, - r  2 sin 2 0) (32) 

with 

A = 1 - 2 M G / r  (33) 

The general solution for the fundamental tetrad field is &' as given by (30), 
with 4) being a particular tetrad compatible, through equation (29), with 
the Schwarzschild metric (32). 

The choice of the solution suitable for the present case is guided by 
imposing two physical requirements: 

1. The gravitational energy-momentum tensor must be diagonal in the 
Schwarzschild coordinates. 

2. The fundamental tetrad field must be asymptotically parallel at 
spatial infinity. 

The first requirement reflects spherical symmetry, and is expressed in 
a system of six differential equations for the six parameters of the local 
Lorentz transformation in equation (30), while the second, which constitutes 
a set of boundary conditions, is the embodiment of  the assumption that the 
deviation from parallelism is traced to the curvature of spacetime. 

A solution satisfying these postulates is found to be 

r = ( A-'/2, 0, 0, 0) 

~b~ = (0, A ~/2 sin 0 cos &, r -~ cos 0 cos &, - r  -1 sin -1 0 sin &) 
(34) 

4~ = (0, A 1/2 sin 0 sin ~b, r -1 cos 0 sin 4~, - r  -~ sin -~ 0 cos &) 

&~ = (0, A ~/2 cos 0, - r  -1 sin 0, 0) 

To visualize the physical meaning of this tetrad, consider a fleet of space- 
ships, each carrying an orthonormal triad, dispersing radially from the star, 
and remaining at rest after rotating themselves through the angles required 
in order for them to stay "parallel" to each other. In fiat space they will 
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constitute the spatial part  of  a parallel tetrad, with ~ba~;t3 = 0 and T~ ~t~ = 0. 
In the presence of the massive star, however, they will deviate from parallel- 
ism by the curvature of  spacetime, while Tc ~t3 is assumed to attain the value 
of  the gravitational energy-momentum associated with the curvature. 
Clearly, any tetrad obtained by applying a global Lorentz t ransformation 
to this tetrad may serve as well. 

The four  nonvanishing components  of  the gravitational energy- 
momentum tensor obtained replacing (34) in (26a) are 

T~ = - (1 / • ) (1  -- A1/2)2r  -2  (35a) 

T~I  = - (1 /K) [ (1  - Al/2)2r-2 + (1 -A-~/2)2MG/r 3] (35b) 

T ~ 2  = T 3 3  = - ( l / K ) ( 1 - A - 1 / 2 ) M G / r  3 (35c) 

It represents a spherically symmetric distribution of the gravitational energy 
approaching zero as r tends to infinity, or when M tends to zero. 

Evaluating the invariant spatial integral of  the gravitational energy 
expressed by (35a) from the surface of the source (r = R) to infinity, one 
obtains 

E ~ ~ o = d9o T~, d3x = - M ( 1  - 12)/(1 +f~) (36) 
R 

where qbo ~ is a timelike unit vector normal to the spatial hypersurface in 
which the source is at rest, and with 

O = (1 - 2 G M / R )  ~/2 

Expanding the above expression in powers of 2 G M / R  and discarding terms 
in the third and higher powers, we find 

E ~ - ( 1 / 2 )  GM2/R 

which is precisely the Newtonian value for the gravitational energy of a 
spherical shell of  radius R and mass M. (Notice that for such a configuration 
of  mass, the total amount  of  Newtonian gravitational energy may be ascribed 
to the external field, the latter being independent of  the radial distribution 
of matter within the source.) 

In the special case of  the sun, taking 

M = 2 x 1 0 3 3 g  

as the sun mass, 

G = 7.425 • 10 -29 C g-l  

as the Newton gravitational constant, and 

R = 7 x 10 m c 
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as the sun's radius, the relativistic value obtained from equation (36) is 

E = -2 .121432. . .  x 1027 g 

which agrees with the Newtonian value 

EN = --2.121428'' �9 x 1027 g 

up to the sixth digit. 

7. C O M M E N T S  A N D  R E M A R K S  

The covariant conservation law of  energy-momentum, expressed by 
the covariant divergencelessness of the energy-momentum tensor, results 
in a global continuity equation valid in a preferred subclass of  the geodesic 
coordinates-- the geodesic-nonrotating frames. This global continuity 
equation leads, in turn, to a physically meaningful integral conservation 
law. Thereby the need for a kind of energy external to the energy-momentum 
tensor, intended to complement the latter to a globally divergenceless 
quantity, is removed. We are therefore motivated to look for a tensorial 
expression of  the gravitational energy as an integral part of  the (now 
construed as total) energy-momentum tensor that appears in the Einstein 
field equation. 

In this context a tensorial expression for the gravitational energy- 
momentum as a function of  a metric tetrad is here proposed. It arises in a 
natural way, following the replacement of the metric tensor by a metric 
tetrad as the fundamental element of the gravitational field. The ensuing 
energy of  the external gravitational field of  a star calculated from this 
tensorial expression results in high agreement with the corresponding 
Newtonian value. It is worth noticing, that this agreement arises spon- 
taneously without the introduction of an ad hoc constant or other coercive 
means. 

The Einstein field equations are preserved in their original form, with 
a gravitational contribution to the sources now assumed. They are cast as 
a quasilinear second-order system of 16 independent differential equations 
for the same number of  components of the tetrad, when the latter replaces 
the metric, with the gravitational and material energy-momentum tensors 
regarded as independent data. 

In this approach, the gravitational energy is no longer a nonlocalized 
evasive quantity of perplexing physical meaning. On the contrary, its 
tensorial, and consequently localized, nature present it as a totally regular 
form of energy. 
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